반응형

전체 글 150

[재료역학] 파손(failure) 이론 - 정적 파손(static failure)

이번 포스팅에서는 파손 이론에 대한 내용 중 정적파손에 대해 먼저 알아보도록 하겠습니다. 파손(failure) 이론이란? 파손은 부품이 두개 혹은 그 이상으로 분리되거나 모양이 바뀌어 부품의 원래 기능을 제대로 할 수 없게 된 상태를 말합니다. 파손은 정하중 상태에서 발생하는 정적파손과 동하중 상태에서 발생하는 피로파손으로 나뉩니다. 그리고 파손 이론은 이러한 파손현상을 복잡한 형상의 부품으로 실험하지 않고 단축인장실험 데이터로 어떻게 입체에 써먹을까 하는 것을 말합니다. 정적 파손(static failure) 정적 파손에 대하여 일반적으로 잘 쓰이는 세가지 이론에 대해 알아보겠습니다. (1) 최대 전단응력 이론(maximum shear stress theory) 최대 전단응력 이론은 기계부품의 최대 전..

공학/재료역학 2021.11.23

[재료역학] 전단변형에너지 공식 유도

이번 포스팅에서는 재료의 파손을 설명하기 위한 이론 중 하나인 전단변형에너지 이론에 쓰이는 전단변형에너지 공식을 유도해보겠습니다. 전단변형에너지 이론? 전단변형에너지 이론은 von mises 이론이라고도 불리며, 재료의 파손을 설명하기 위해 제안된 이론 중 하나입니다. 재료의 파손에 대한 내용은 추후 포스팅에서 설명드리도록 하겠으며, 본 포스팅에서는 해당 이론에 쓰이는 전단변형에너지 공식을 유도해보겠습니다! 전단변형에너지 공식 유도 전단변형에너지를 알기 위해서는 총 변형에너지와 체적변형에너지를 알아야 합니다. 전단변형에너지는 총 변형에너지에서 체적변형에너지를 뺀 값이기 때문이죠! $$ 전단변형에너지 = 총 변형에너지 - 체적변형에너지$$ 총 변형에너지 3차원 응력 상태에서 총 변형에너지는 아래와 같습니다..

공학/재료역학 2021.11.15

[재료역학] 본 미세스 응력(Von mises stress)

이번 포스팅에서는 본 미세스 응력에 대하여 알아봅시다. 본 미세스 응력(von mises stress)이란? 부르기에 따라 본 미세스 응력, 폰 미세스 응력이라고 부르기도 하는 이 응력은 흔히 등가응력(equivalent stress)으로 불리는 특수한 목적을 가진 응력입니다. 물체가 하중을 받게 되면 더 이상 외력을 견디지 못하고 파괴되는 시점이 오는데, 이러한 파괴를 예측하는 기준이 되는 응력을 항복응력(Yield stress)이라고 하며, 이 항복응력의 대표적인 기준으로써 본 미세스 응력이 쓰입니다. 예를 들어 특정 지점에서 각 3개의 normal stress, shear stress가 발생할 때 각 응력 성분들만으로는 물체가 외부하중에 의해 안전할지, 파괴될지를 판단할 수 없습니다. 이 때 각 응..

공학/재료역학 2021.09.30

[정보] 연말정산

이번 포스팅에서는 연말정산에 대하여 알아보겠습니다. 연말정산 연말정산이란 소득 발생 시 원천징수하는 소득세와 그 해에 납부했어야할 세금을 계산하여 만약 더 납부했다면 환급하고, 덜 납부했다면 추가로 징수하는 것을 말합니다. 근로소득자라면 이 연말정산에 대한 내용을 필히 숙지하여 세금을 더 내거나 덜 내서 억울한 일이 없도록 하여야 합니다. 여태까지는 연말정산 관련 서류를 근로자가 직접 챙겨야하는 일이 많았는데, 내년 연말정산(2021년 귀속분)부터 근로자는 홈택스에 접속할 필요 없이 회사가 정리한 서류를 확인만 하면 되도록 간소화된다고 하니 근로자 입장에서는 희소식이 아닐 수 없습니다. 소득공제 & 세액공제 기본적으로 아무 공제도 받지 않을 경우, 아래와 같이 과세 표준에 따라 소득별로 세율과 누진공제액..

잡학사전/일반 2021.09.13

[정보] 금산분리(Separation of industrial and financial capital)

이번 포스팅에서는 금산분리가 무엇인지에 대해 알아보겠습니다. 금산분리(Separation of industrial and financial capital) 금산분리법은 아래와 같은 법을 통해 금융자본과 산업자본 상호간의 지분 소유를 금지하고 있습니다. 1. 금융지주회사는 금융업이나 보험업, 혹은 이와 밀접한 관련이 있는 회사의 주식을 제외한 다른 회사의 주식을 취득할 수 없다. 2. 비금융회사는 은행주식의 4%를 초과하여 보유할 수 없고(지방은행은 15%), 의결권을 행사하지 않는 조건으로 금융감독위원회의 승인을 얻은 경우 10%까지 보유가 가능하며, 이와 똑같은 법이 금융지주회사법에도 등재되어 있다. 3. 은행과 보험회사는 다른 회사의 의결권이 있는 발행주식의 15%를 초과하는 주식을 소유할 수 없다...

잡학사전/경제 2021.09.12

[정보] 주식 매매 시 발생하는 세금

이번 포스팅에서는 주식 매매 시 발생하는 세금에 대해 알아보겠습니다. 주식 매매 관련 비용 주식 매매 시 보통 HTS, MTS를 통해 많이들 거래합니다. 그런데 이 때 비용이 발생하게 되는데요. 흔히 '거래수수료'라고 부르는 이 금액은 엄밀히 말하면 증권사에서 가져가는 수수료 등과 국가에 내는 세금이 합쳐진 금액입니다. 하지만 요즘 수수료는 증권사에서 신규 투자자를 유치하기 위해 '평생 무료 혜택'을 제공하여 많이들 없어지는 추세이긴 합니다. 하지만 수수료가 0원이라고 해도 세금이 있기 때문에 거래에 비용이 발생하지 않는건 아니라는 점! 언제 발생하나? 우선 매수할 경우와 매도할 경우, 그리고 배당을 받는 경우로 나누어 살펴봅시다. 매수하는 경우 매수 시에는 '위탁거래 수수료', '유관기관 수수료'가 발..

[정보] 퇴직연금

이번 포스팅에서는 퇴직연금에 대하여 알아보겠습니다. 퇴직연금 제도란 퇴직연금제도는 근로자의 노후 생활을 위한 소득을 유지시키기 위해 사용자(일반적으로 회사)가 퇴직급여로 지급할 재원을 금융사 등에 적립하고, 근로자 혹은 사용자가 운용하여 퇴직 시 지급하는 제도입니다. 퇴직연금 종류(DB, DC, IRP) 운용 주체 및 가입 방법 등에 따라 확정급여형(DB), 확정기여형(DC), 개인형퇴직연금(IRP)로 나뉘는데요. 확정급여형 퇴직연금(DB, Defined Benefits retirement pension) 이름에서 알 수 있듯 근로자가 퇴직할 때 받을 퇴직 급여가 사전에 확정된 연금입니다. 사용자(회사)가 매년 금융회사에 적립 및 운용하며, 근로자는 그에 따른 정해진 수준의 퇴직금을 수령하게 됩니다. 이..

[정보] 주택청약 종합저축

이번 포스팅에서는 주택청약 종합저축에 대해 알아봅시다. 주택청약 종합저축? 주택청약 종합저축이란 주택청약권이 주어지는 저축상품으로 이 계좌가 없다면 적어도 우리나라에선 아파트 청약이 불가합니다. 내 집 마련의 꿈에 다가가고 싶다면 하나쯤은 마련해두는게 좋은 상품입니다. 국민주택 / 민영주택 주택 청약을 할 때 두가지 중 하나를 선택하게 됩니다. 국민주택과 민영주택인데요. 이 때 국민주택이냐, 민영주택이냐에 따라 1순위가 되는 조건이 다릅니다. 국민주택 국민주택의 경우 가입 기간과 납입 횟수가 중요합니다. 1회 납입 시 10만원 까지만 인정을 하기 때문에 50만원이 생겼다고해서 한번에 납입할 것이 아니라, 50만원을 10만원 씩 나눠 5회 납입하는 것이 유리합니다. 또한 국민주택은 대개 저렴하게 분양되기 ..

[정보] 공모주 배분 방식

이번 포스팅에서는 공모주 배분 방식에 대해 살펴봅시다. 공모주란? 공모주의 공모는 '공개모집'을 뜻합니다. 기업은 기업공개(IPO)를 통해 주식시장에 참여하려 할 때, 청약을 통해 자신에게 투자할 주주들을 모집합니다. 해당 기업의 사업 포트폴리오, 미래가치 등으로 인해 공모주에는 통상 일정 부분 할인율이 적용되어있다고 여겨지기 때문에 청약을 하는 기관, 외국인, 개인 등은 일정 수익률을 기대하고 청약에 나섭니다. 소위 '따상', '따상상'이라는 용어가 그렇기 때문에 생겨나는 것인데요. '따상'이란 상장 첫 날 기업의 주가가 공모가의 2배로 시초가를 형성하고, 일일 상한가인 +30%를 기록하는 것을 의미합니다. '따상상'은 따상 다음 날 까지도 상한가를 기록하는 것을 말합니다. 이렇듯 공모주 청약은 높은 ..

[유한요소법] 최소 포텐셜 에너지의 원리(principle of minimum potential energy)

이번 포스팅에서는 최소 포텐셜 에너지의 원리에 대해 알아보겠습니다. 최소 포텐셜 에너지의 원리(principle of minimum potential energy) 최소 포텐셜 에너지의 원리란, 보존계에서 탄성체는 포텐셜 에너지를 최소화하는 방향으로 변형한다는 것입니다. 그 결과 물체는 안정적인 평형상태에 놓이게 됩니다. 우리는 이 원리를 이용해서 탄성계의 운동방정식을 유도할 수 있습니다. 최소 포텐셜 에너지의 원리 예제 위 그림과 같은 탄성계를 고려해봅시다. 스프링 변형에 의한 potential energy 및 force에 의한 일을 고려하여 total energy를 구하면 아래와 같습니다. $$E = \frac{1}{2}k_1(q_1-q_2)^2+\frac{1}{2}k_2q_2^2+\frac{1}{2..

반응형