이번 포스팅에서는 테일러 급수에 대해 알아봅시다. Taylor's series(테일러 급수)의 정의 테일러 급수란, 원래의 함수를 도함수들의 한 점에서의 값으로 계산된 항의 무한합으로 나타내는 방법입니다. 그러한 성질을 가지고 있기 때문에 수치적분에서 많이 쓰이기도 합니다. 정의는 이러합니다. 함수 $f: R → R$이고, 임의의 실수 $a ∈ R$ 일 때, 테일러 급수는 아래와 같이 나타낼 수 있습니다. $f(x)=f(a)+f'(a)(x-a)+\frac{1}{2!}f''(a)(x-a)^2+\frac{1}{3!}f'''(a)(x-a)^3+...$ Taylor's series 유도 테일러 급수가 어떻게 나오는지에 대한 과정을 유도해보겠습니다. 미적분학의 기본정리로부터 $\int_a^xf'(t)dt=f(x)..