반응형

손실함수 2

[머신러닝] 손실함수(loss function) (2) - 엔트로피(Entropy)

이번 포스팅에서는 entropy에 대해 알아보겠습니다. (출처: 선형대수와 통계학으로 배우는 머신러닝 with 파이썬, 장철원 지음) 엔트로피(Entropy) entropy는 정보이론에서 불확실성의 척도로 사용합니다. (저는 사실 entropy는 열역학할 때만 쓰는 개념인 줄 알았습니다.) 확률변수 $x$의 entropy는 아래와 같이 정의합니다. Entropy $$H(x) = -\sum_{i=1}^n P(x_i)\log P(x_i)$$ entropy가 높다는 것은 정보가 많고 확률이 낮다는 것을 의미합니다. entropy는 하나의 분포를 대상으로 하는 반면, cross entropy는 두 분포를 대상으로 합니다. Cross Entropy $$H_{p,q}(x) = -\sum_{i=1}^n P(x_i)\..

[머신러닝] 손실함수(loss function) (1) - L1, L2 손실함수

이번 포스팅에서는 손실함수에 대해 알아보겠습니다. (출처: 선형대수와 통계학으로 배우는 머신러닝 with 파이썬, 장철원 지음) 손실함수(loss function) 손실함수는 머신러닝을 통해 생성한 모형이 실제값과 얼마나 차이가 나는지 손실 정도를 수치로 나타낸 함수입니다. 손실함수에는 $L1$ 손실함수와 $L2$ 손실함수가 존재합니다. 그리고 손실함수와 비슷하게 비용함수라는 개념도 존재합니다만 엄밀하게 말하면 서로 다르지만 실제로는 구분없이 사용하기도 한답니다. $L1$ 손실함수 $L1$ 손실은 실제값과 예측값의 차이를 말하며 수식으로 아래와 같이 표현할 수 있습니다. $$\sum_{i=1}^n \left\vert y_{i,true} - y_{i,predict} \right\vert $$ $L1$ 손실..

반응형