이번 포스팅에서는 얀센의 부등식에 대해 알아보겠습니다. (출처: 선형대수와 통계학으로 배우는 머신러닝 with 파이썬, 장철원 지음) 얀센의 부등식(Jansen's inequality) 얀센의 부등식은 기댓값의 convex 함수와 convex 함수의 기댓값 사이에 성립하는 부등식입니다. 얀센의 부등식은 아래와 같이 나타냅니다. $$f(wx_1+(1-w)x_2) \leq wf(x_1)+(1-w)f(x_2)$$ 앞서 언급했던 함수 $f$가 컨벡스(convex)할 조건과 같습니다. 이를 좀 더 일반화한다면 아래와 같이 나타낼 수 있습니다. $$f(w_1x_1+...+w_kx_k) \leq w_1f(x_1)+...+w_kf(x_k)$$ 여기서 $x_1, ... x_k$는 함수 $f$의 정의역이며, $w_1, ...