반응형

하이퍼파라미터 2

[머신러닝] 그리드 서치(grid search)

이번 포스팅에서는 그리드 서치(grid search)에 대해 알아보겠습니다. (출처: 선형대수와 통계학으로 배우는 머신러닝 with 파이썬, 장철원 지음) 그리드 서치(grid search) 그리드 서치는 관심있는 매개변수들을 순차적으로 입력한 후에 가장 높은 성능을 보이는 하이퍼파라미터를 탐색하는 방법입니다. 쉽게 말해 가능한 모든 경우의 수를 따져서 맘에 드는 하이퍼파라미터를 고르는거죠. 예를 들어 k-최근접 이웃 알고리즘에 사용할 수 있는 k 값에는 여러 후보가 존재하고, 어떤 하이퍼파라미터 k가 높은 성능을 보일지는 직접 해보기 전엔 알 수가 없습니다. 모두 해보고 모형의 성능을 비교한 후 최적의 k를 선정해야하죠. k-최근접 이웃 알고리즘 (Python) 파이썬 예제를 통해 k-최근접 이웃 알고..

[머신러닝] 교차 검증(cross validation)

이번 포스팅에서는 교차 검증에 대해 알아보겠습니다. (출처: 선형대수와 통계학으로 배우는 머신러닝 with 파이썬, 장철원 지음) 교차 검증(cross validation)이란? 오버피팅과 언더피팅을 방지하고 적합한 모형을 추정하기 위해 모형의 성능을 검증하는 것을 교차검증(cross validation)이라고 합니다. 위 그림과 같이 최초에 Data가 주어져 이 데이터를 이용해 모형을 만든다고 해 봅시다. 그런데 전체 data set을 사용하여 모형을 생성하면 실제 data에 적용해보고 성능을 평가할 새로운 data가 없기 때문에 문제가 됩니다. 이 문제를 해결하기 위해 전체 data를 training data와 test data로 분할합니다. 이 경우 training data는 모형 생성을 위한 학습..

반응형